
Fast Sorting Algorithms on Reconfigurable Array of
With Optical Buses

Mounir Hamdi, J. Tong, and C . W. Kin
Department of Computer Science

Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Abstract

The Reconfigurable Array with Spanning Optical Buses
(RASOB) has recently received a lot of attention from the
research community. By taking advantage of the unique
properties of optical transmission, the RASOB provides
flexible reconfiguration and strong connectivities with low
hardware and control complexities. In this paper, we use
this architecture for the design of efficient sorting algo-
rithms on the I -D RASOB and the 2 - 0 RASOB. Our parallel
sorting algorithm on the I-D RASOB, which sorts N data
items using Nprocessors in O(k) time where k is the size of
the data items to be in bits, is based on a novel divide-and-
conquer scheme. On the other hand, ourparallel sorting al-
gorithm on the 2 -0 RASOB is based on the sorting algo-
rithm on the I -D RASOB in conjunction with the well known
Rotatesort algorithm. This algorithm sorts N data items on
a 2 -0 RASOB of size N in O(k) time. These sorting algo-
rithms outperform state-of-the-art sorting algorithms on
reconfigurable arrays of processors with electronic buses.

1. Introduction
Reconfigurable architectures are attractive because they

provide alternatives to completely connected systems at
lower implementation costs. Since optical interconnects can
offer many advantages over its electronic counterpart, they
will soon be a viable alternative for multiprocessor inter-
connections [3]. This paper describes the Reconfigurable
Array with Spanning Optical Buses (RASOB) architecture
which provides flexible reconfiguration as well as rich con-
nectivities at low hardware and control complexities [2, 111.
Then we use this architecture for the efficient implementa-
tion of sorting algorithms which outperform state-of-the-art
sorting algorithms on arrays of processors with electronic
buses.

A unique feature of the RASOB architecture that distin-
guishes it from other array of processors with either optical
or electronic buses [3, 191 is that there is a direct connection
between any two processors. More specifically, in a RA-
SOB, a processor at row i and column j can send a message,
without buffering at any intermediate processor, to a pro-
cessor at row k and column I , even if i # k and j # 1. Such a
direct connection between these two processors at different

This research work was supported in part by the Hong
Kong Research Grant Council under the grant RGC/
HKUST 100/92E.

rows and di€ferent columns cain be established by setting an
electro-optical switch [23] that interconnects the row i and
column 1. We will refer to the operation of setting switches
as hardware reconfiguration in an RASOB.

The RASOB architecture also takes advantage of two im-
portant properties of the optica 1 transmissions, namely, uni-
directional propagation and predictable unit propagation
delay. Hence, the processors can he programmed to send
and receive imessages under synchronized control, such that
a connection between a source and a destination is estab-
lished by letting the source send a message at a specific
point in time and letting the destination receive the message
at another specific point in time [3, 8, 231. We refer to this
type of reconfiguration as software reconfiguration.

Because some of the reconfiguration is done in software,
the complexity of both hardware and control required for
the reconfiguration in an RASOB can be kept low. However,
despite its low control and hardware complexity, the pro-
posed RASOB architecture provides flexible reconfigura-
tion that leverages the high communication bandwidths
available in optical interconnects. As a result, the RASOB is
a very promising architecture for the efficient parallel im-
plementation of many communication intensive algorithms.

The paper is organized as follows. section 2 describes the
RASOB architecture. In section 3, we give the detailed de-
sign and analysis of our sorting algorithms on a l-D RASOB
and on a 2-D RASOB. Finally, we conclude in section 4.

2. Architectural Model
The RASQB architecture is similar to the array structure

described in [2, 101 and in particular to the array structures
described in [l l] . A main difference is that in the proposed
architecture, messages are sent and received according to
specific timing requirements. This makes the proposed ar-
chitecture suitable for SIMD applications. On the other
hand, the structure in [1 I] employs an addressing mecha-
nism which supports MIMD applications at higher hard-
ware and control complexities. Figure 1 illustrates the ar-
chitecture oB a 2-D RASOB. ,4s shown in Figure la, there
are n folded row buses and n folded column buses. Each
processor has a transmitting interface to the upper segment
of a row bus, and two receiving interfaces to the lower seg-
ment of the row bus and the right segment of a column bus,
respectively. We denote the row of a 2-D RASOB or the col-
umn of a 2-D M S O B as a 1-D RASOB. Further, the term

183
0-8186-7267-6/96 $05.00 0 1996 IEEE

RASOB is used to denote a 2-D RASOB.

Switches 0 Processors

Column bus n

0
Column bus 1 Column bus 2

(a)
From a column bus

mrd To a row bus
tf_==tt

Straight

Cross
(b) To a column bus

Figure 1. (a) The architecture of RASOB, and (b) A
switch interconnecting a row and a column bus.

A distinct architectural feature of the RASOB is that a 2
x 2 electro-optical switch is placed at the intersection of a
row and a column bus, as shown in Fiigure 1.b. When the
switch is set to "straight", a message arriving along a row
bus will continue propagating; otherwise, the message will
be switched to the column bus. During a specific period, all
the switches at a given row are set to straight. As a result,
processors at a row communicate with each other at the
same row. This type of communications is referred to as
"Row communications" and the period during which row
communications is accomplished is referred to as a Row
phase. A processor may also communicate with a processor
at a dzfferent row, which may or may not be at a different
column. This type of communications is referred to as "Col-
umn communications" and is accomplished by switching
the message from a row bus to the desired column bus dur-
ing a period called Column phase. In doing so, the switches
are set to "cross" for the duration of the message and then
changed back to the straight state.

2.1 Software Reconfiguration

In a row phase, each row bus operates independently
from the others so it is sufficient to describe just one row
bus (e.g., row bus r), as shown in Figure 2. We will denote
the processors at row r from left to right by p(r, l), p(r , 2),
... andp(r, n), respectively.

There are two important optical transmission properties,

Train loading

@ 5 c 1 p(r. n)

Train unloading -
Figure 2. Train loadinglunloading on a row bus.

unidirectional propagation and predictable propagation
delay of the optical signals, that make concurrent access of
an optical bus possible. With an appropriate spatial separa-
tion between the neighboring PES, message collision can be
avoided even when the PES are transmitting messages con-
currently [2, 3, 8, 113. Hence, we assume that each proces-
sor on a row bus is separated in time by D = bw + 6 from
its neighbors, where b is the maximal length of a packet in
bits, w is the optical pulse width (or bit duration) in seconds,
and 6 > 0 is used as guard bands to tolerate synchronization
errors. This temporal separation can be achieved by separat-
ing the two neighboring transmitter interjiaces on the upper
segment as well as the receiver interfaces on the lower seg-
ment of a row bus with a fiber length D x c, where c is the
speed of light in the fiber, as shown in Figure 2.

We may use the train loading/unloading model to de-
scribe the operations in a row phase. Let us imagine that at
the beginning of a row phase, a train of n cars is originated
at the right-most end of the upper segment of the row bus.
Each car can be regarded as an empty packet slot with a du-
ration of D. During a row phase, the switches that connect
the row bus with column buses are in the "straight" state so
that the train will run through the lower segment of the row
bus. A simple assignment of the curs is to let processorp(r,
1) use car 1 for sending its packet, let p(r, 2) use car 2 for
sending its packet and so on.

With. this assignment of the curs, the time when p(r, i)
may transmit its packet, relative to the beginning of the row
phase, is given by

RowSend[(r,i)] = (i - 1) D + (n - i) D = (n - 1) D

As a result, all processors will be transmitting simulta-
neously. In addition, a receiving processor can determine
the exact time when the car carrying the packet will arrive
at its receiver interface. More specifically, if processor p(r ,
i) is expecting a packet sent by p(r, j) , it can calculate the
time it should pick up the packet as below,

RowRec[(r,i) t (r , j)] = (n - l) D + (i + j - l) D (2)

= (n + i + j - 2) D

By placing all the processors under a synchronized control
and letting each processor send and receive at specific
points in time as in Equations (1) and (2), the row bus can
be reconfigured into a variety of interconnection patterns.

2.2 Hardware Reconfiguration

If a processor needs to communicate with another pro-

184

cessor at a different row, it has to send a packet in a column
phase. The train loading/unloading model is also useful in
illustrating the principles involved in column communica-
tions. We let car 1 of the train make a turn, from the lower
segment of a row bus, onto column bus n, car 2 make a turn
onto column bus (n - 1), and so on.

Similar to Equation (2), we can determine the time that
car k arrives at switch (n - k + 1) to be

SwitchArvl[(r,n-k+1) t (r , k)] = (2 n - l) D

Since the right side of the equation does not contain k, ev-
ery car arrives at its turning point at the same time. There-
fore, one may set the switches on a row bus to “cross“ si-
multaneously and by doing this, the n packets in the train
are switched onto their respective destination columns, one
packet per each column. This arrangement implies that dur-
ing a Column phase, two or more processors at the same
row can not send packets destined to the same column.

If p(i, j) needs to communicate with p(r, k) where r # i,
p(i , j) have to transmit a packet into cur (n - k + 1). We can
determine the time for p(i, j) to transmit its packet to be

Colsend[(i , j) + (r , k)] = (n - k) D + (n - j) D

+ 2 n - j - k) D

By separating the adjacent row buses by D, a column bus
will look like a row bus that is turned 90’ anti-clockwise af-
ter the packets are switched. With as much as D separation
between every two row buses, there will be again a train of
n cars, each carrying a packet, formed on the left segment
of a column bus. Hence, we can determine the time for p(r,
k) to pick up the packet at the its receiver interface on the
column bus, which is sent by p(i , j) , to be

C o l R e c [(r , k) t (i , j)] = (2 n + i + r - 2) D

2.3 Connectivity and Complexity

Software reconfiguration can be performed with little
control overhead because each of the above Equations (1) to
(5) involves simple arithmetic calculations. In addition, the
hardware complexity of the proposed architecture is low be-
cause each processor uses only one two-state 2 x 2 switch
and has only one transmitter. Despite the low control and
hardware complexities, the RASOB provides strong connec-
tivities due to the following characteristics. First, a direct
connection between any two processors can be established.
Second, reconfiguration is flexible as one may interleave
Row and Column phases in many ways to provide the com-
munication bandwidth required by an application. Finally,
since only a portion of optical power is tapped off at each
receiver interface, multicasting can be supported simply by
programming multiple receivers to receive at different
points of time during the same phase.

3 Algorithm Development

Although the RASOB has a strong connectivity, it, like
many practically scalable architectures, has a weaker con-

nectivity than a completely-connected network. The capa-
bilities as well as restrictions of the architecture makes it an
interesting yet challenging task to design efficient algo-
rithms for the RASOB. In designing algorithms for the RA-
SOB, one may use the idea prciposed in [2, 111 to partition
the set of connections required by an application into sub-
sets such that the connections in each subset can be estab-
lished in a Row/Column phase. However, such a partition
may not result in optimal number of communication phases
and therefore a customized design may be necessary. As an
example of hlow one can take advantage of the capabilities
while overcoming the restrictions of the RASOB architec-
ture, we develop efficient sorting algorithms for the 1-D
RASOB and the 2-D RASOB which outperform state-of-the-
art sorting algorithms on the various models of arrays of
processors with reconfigurable electronic buses.

3.1 Sorting on a Linear RASOB

Because of its fundamental importance, sorting is one of
the most extensively studied computing problems. The sort-
ing problem can be defined as the rearrangement of N data
items so that they are in ascending or descending order.
Given a sequence SQ = {so, SI, ... , S N . ~ } of N data items, a
linear ordering ‘‘< “ is defined in SQ and N is an integer. Ini-
tially, the data items of SQ are permuted in a random order.
The purpose of sorting is to arrange the data items of SQ
into a new sequeince SQ’ = {s’c,, s’1, ... , S’N-I} such that s’,
< s’ ,+~ for i =: 0, 1, ... , N - 2. If two data items s, and sJ are
equal, then s, is taken to be the larger of the two data items
if i > j ; otherwise sJ is the larger data item.

Many researchers have developed various parallel algo-
rithms to speed-up sorting on different parallel computation
models. In particular, fast state-of-the-art sorting algorithms
were presented recently for various models of processor ar-
rays with reconfigurable electronic buses [3]. Wang et al.
proposed a constant time algorithms using O(N3) proces-
sors [l2]. Using the Columnsort technique proposed by
Leighton [lo], Ben-Asher et ai’. proposed an O(4‘) sorting

‘i PES, fort 2 2 [l]; but
1 + 2 x (2/3)

Jang et al. proposed a constant lime sorting algorithm using
O(N2) processors [4]. Recently, Nigam and Sahni proposed
two simpler constant time sorting algorithms using O(N2)
processors (91. Finally, Kao et al. proposed a constant time
sorting algorithm using 0 (N 5 I 3) processors under the as-
sumption of a very wide data bus [5].

Although very fast, all these ,algorithms require an exces-
sive number of processors to achieve that speed. However,
when the size of data items to be sorted, N, is equal to the
number of PES, it was shown tlhat the reconfigurable array
of processors cannot sort in better than O(N) time [9].

The sorting algorithms presented in this paper use the
same number of processors as Ihe number data items to be
sorted. Yet there are almost as fast as the state-of-the-art

185

sorting algorithms which employ a much larger number of
processors.

Our sorting algorithm on a 1-D RASOB uses a divide-
and-conquer approach to sort the data items as follows.
First, we divide all the data items into two groups SQs and

S S

SQL, where SQs = {so , ..., s1 } and S Q L =

such that each data element of SQs, si is smaller than each
S

data element of SQL, S . . However, the data elements of

SQs and SQL may not be sorted yet. Next, we divide the
data elements of SQS into two sub-groups such that each
data element of the first sub-group is smaller than each data
element of the second sub-group. We do the same thing for
the data elements of SQL. We continue this division process
until the size of each subgroup is equal to 1, in which case
all the data elements will be sorted in the 1-D RASOB. Fig-
ure 3 further illustrates this division scheme.

J 1

* *
0000 A n - - * * * * * W V V V

Figure 3. The general idea of the divide-and-conquer
sorting algorithm on a 1-D RASOB.

Given N data items, where each data item is represented
by k binary bits, and are distributed one data item per pro-
cessor in a 1-D RASOB. Initially, each processor holds a
single data item and two variables namely START = 1 and
END = N . The variable START represents the index of the
left-most processor within a group. Thus, at the beginning
of the sorting algorithm, all processors belong to a single
group, and the index of the left-most processor is 1 (i.e.,
START = 1). Similarly, the variable END represents the in-
dex of the right-most processor within a group. Conse-
quently, at the beginning of the sorting algorithm, the vari-
able END is equal to N which the index of the right-most
processor of the group. During the sorting algorithm, each
processor must maintain and update the values of these two
variables so that it knows the members of its own group.
Members of the same group must have the same values of
START and END. We denote STARTi and ENDi to be the
values of the variables START and END of processor p(i).

Our sorting algorithm performs k iterations, where each
iteration corresponds to a bit position of the data elements
to be sorted, of the following 8 steps:

Procedure SORT

During iteration I :

1. Each processor p(i) broadcasts the data item it holds to
p(STARTi), p(STARTi + l), ..., p(ENDi), including itself,
if the Ith most significant bit of its data item is equal to 0.
After this step, the RASOB processors will contain a vari-
able number of data items in their respective receiving
buffers.

2. Each processor p(i) checks its receiving buffer if it con-
tains an (i - STARTi + 1)th data item. If that is the case,
then it marks it down and does a type I replacement
which is described in step 5 of the algorithm. Moreover,
it clears its receiving buffer. The value of (i - STARTi +
1) represents the position of p(i) in its subgroup, starting
from left to right. Processor p(i) gets the (i - STARTi +
1)th data item in order to let the processors on its left get
data items of smaller values since the Ith significant bit is
0. Hence, the processors on its left side can form their
own subgroup later.

3. This analogous to Step 1 above. Each processor p(i)
broadcasts the data item it is holding to p(STARTi),
p(STARTi + l), ..., p(ENDi), including itself, if the Ith
most significant bit of its data item is equal to 1. After
this step, the RASOB processors will contain a variable
number of data items.

4. Each processor p(i) checks its receiving buffer if it con-
tains an (ENDi - i + 1)th data item. If that is the case, then
it marks it down and does a type II replacement which is
described in step 5 of the algorithm. Moreover, it clears
its receiving buffer. The value of (ENDi - i + 1) repre-

sents the position of p(i) in its subgroup, starting from
right to left. Processor p(i) gets the (ENDi - i + 1)th data
item in order to let the processors on its right get data
items of larger values since the Ith significant bit is 1.
Hence, the processors on its right side can form their own
subgroup later.

5 . Each processor does a type I replacement or a type II re-
placement by replacing the data item it is holding with
the marked data item.

6. Each processor p(i) sends a message to p(i - 1) only if i -
1 START. and sends a message to p(i + 1) only if i + 1 I
ENDi to find out what type of replacement they have per-
formed. In other words, processor p(i) finds out whether
the processor on its immediate left and the processor on
its immediate right belong to the same group or not since
p(STARTi) has no processor on its immediate left belong-
ing to the same group and p(ENDi) has no processor on
its immediate right belonging to the same group

7. For each processor p(i) , if it has performed a type I re-
placement and finds that i+l 5 ENDi andp(i+l) has per-
formed a type II replacement, then p(i) sends a message
to p(STARTi), p(STARTi + I), ..., p(i) so that they change
their variable END to be equal to i.

8. For each processor p(i) , if it has performed a type II re-
placement and finds that i - 1 STARTi and p(i-1) has per-
formed a type I replacement, thenp(i) sends a message to

1

186

p(i), p (i + l), ..., p(ENDi) informing them to change their

variable START to be equal to i.
End {Procedure SORT)

We can note here that Step 7 and Step 8 are used to divide
a group of data items into two sub-groups such that the val-
ue of each data element of the first subgroup is smaller than
the value of each data element in the second sub-group. Fur-
ther, within one whole iteration, say iteration x , of the above
algorithm, each processor can perform just one type or re-
placement (i.e., type I or type I I) since its xth most signifi-
cant bit can be either 0 or 1 but not both at the same time.

Theorem 1: The SORTprocedure can be computed in O(k)
time on a 1-D RASQB where k is the size of the data ele-
ments to be sorted in bits.

Proof: Step 1 and Step 3 of the SORTprocedure are simple
broadcast operations on a 1-D RASOB where the corre-
sponding processors load their respective data items into the
appropriate car of the transmission train of slots. each of
these cars (slots) will be read by all processors in a 1-D RA-
SOB in a single row communication phase. Consequently,
Step 1 and Step 3 of the procedure SORT take 0(1) time.
Step 2, Step 4 and Step 5 of the procedure SORT obviously
each takes O(1) time since they simply involve accessing
the receiving buffers of the processors and the replacement
of the data items they are holding. Step 6 is a simple routing
pattern between neighboring processors which can be ac-
complished in a single row communications phase. Finally,
Step 7 and Step 8 of the procedure SORT involve a broad-
casting operation which also takes a single row communi-
cation phase. Hence, each iteration of the procedure SORT
takes O(1) time. Consequently, the whole sorting algorithm
on a 1-D RASQB take O(k) time since the number of itera-
tions of the procedure SORT is k where k is the size of the

We have to note here that under most practical situations
k rarely exceeds 20. As a result, the time complexity of this
sorting algorithm on a 1-D RASOB is almost constant.

One drawback of the above SORTprocedure is that it re-
quires each processor of the 1 -D RASOB to have a receiving
buffer of size N, where N is the size of the data items to be
sorted. Fortunately, the above drawback can be solved by
simply installing a counter at each processor and requiring
the size of the receiving buffers be equal to just 1. During
each iteration of the SORTprocedure, each processor is re-
quired to replace the data item it is holding either by the (i -
START, + 1)th data item it receives in its buffer in Step 2, or
by the (END, - i + 1)th data item it receives in its buffer in
Step 4. Hence, we can use these counters to keep track of
the data item that the appropriate processor is interested in.
First, we have to set the counter of each processor to 0 be-
fore the execution of Step 2 and before the execution of Step
4 of the procedure SORT. Then, we increment the counter
by 1 for each received data item in the buffer of the proces-
sor. Since the receiving buffers of each processor can hold
only a single data item, every new incoming data item will

data items to be sorted in binary bits.

replace the old one, until the counter is equal to i -START, +
1 if Step 2 is being executed or the counter is equal to END,
- i + 1 is Step 4 is being executed. Afterwards, each proces-
sor p(i) stops accepting any more messages for the whole
duration of either Step 2 or Step 4. Consequently, right after
Step 2 or Step 4 of the procedure SORT, the data item inside
the receiving buffer of each processor is the one needed to
perform the replacement in Step 5.

3.2 Sorting on a 2-D RASOB

The procedure SORT on the 1-D RASOB can be easily
extended to a 2-11 RASOB whiile retaining the same time
complexity, O(k) One way to extend the procedure SORT
is to use Leighton's Columnsort algorithm [9] or to use
Maberg and Gafni Rotatesort algorithm [7]. In our imple-
mentation of the procedure SORT on the 2-D RASOB, we
use the Rotatesort algorithm.

The Rotatesort algorithm is a row-column sorting
technique proposed originally for the 2-Dl mesh [7]. As this
paper is not particularly concerned with 2-D mesh, the main
interest is in Rotatesort as it applies to a 2-D arrays of data
items to be sorted. More precisely, the fact that Rotatesort
partitions a set of N data items into subsets (rows and
columns), which can be sorted independently on a 2-D
RASOB while using just the 1-D RASOB SORTprocedure.

Given N =: RS data elements arranged as a 2-D R x S
array, the Rotatesort technique 171 sorts the N data elements
by alternately transforming the rows and columns of the
array. The nuimber of row and column phases is constant (14
or 16 phases). Each transformation phase consists of either
performing a circular shift operation on the elements of
each row or each column.

During Rotatesort, the R x S array of data elements is
partitioned as shown in Figure 4. A vertical strip
(respectively, horizontal strip) is an R x S'" (respectively,
S"* x S) subairray of data elements. Also, a block is a S'" x
S subarray of data elements. The algorithm as presented in
[7] assumes that R = 2' and S = 2!', where s is an even integer
and r sl2. However, other vallues of R and S can be used
with little modification. The algorithm description can be
facilitated by defining the following macros:

Vertical Strips

&1/2

Horizontal Strips Blocks

Figure 4. Partitions of the R x S array.
Macro BALANCE: applies to a subarray of size U x v
and consists of the followiing three steps:
a. Sort all columns down,ward.
b. Rotate each row i rightward by (i mod v) positions.
c. Sort all columns downward.

187

Macro UNBLOCK: distributes the data elements of
each block among all columns. It consists of the
following two steps:

Rotate each row i rightward by (is”’ mod S)
positions.

a.

b. Sort all columns downward.
Macro SHEAR: equivalent to performing one iteration
of the shear-sort algorithm. It consists of the following
two steps:
a. Sort all even-numbered rows rightward and all odd-

numbered rows leftward.
b. Sort all columns downward.

a 2-D RASOB almost as efficient as constant time sorting.

Theorem 2: Sorting N data items can be computed in O(k)
time on a 2-D RASOB of size N where k is the size of the
data items to be sorted in bits.

4 Conclusion

The M S O B architecture has recently received a lot of
attention from the research community. In this paper, we
used this novel architecture for the implementation of two
efficient sorting algorithms. The first sorting algorithm has
been implemented on a 1-D RASOB. It which is based on a
divide-and-conquer approach, has a time complexity of
O(k) where k is the size of the data elements to be sorted in
bits. The second algorithm has been implemented on a 2-D

The Rotatesort algorithm can be described in terms of
these macros as follows:

Procedure Rotatesort: RASOB. It uses the-sorting algorithms implemented for the
1-D RASOB in conjunction with the well known Rotatesort
algorithm to achieve an O(k) time complexity. Both of these
algorithms are more efficient that state-of-the-art sorting
algorithms on various models of array of processors with
reconfigurable electronic buses. Hence, the RASOB seem to
be a very promising architecture for fUtUre massively
parallel computing.

1) Perform BALANCE on each vertical slice.
2) Perform UNBLOCK on the entire array.
3) Perform BALANCE on each horizontal slice.
4) Perform UNBLOCK on the entire array.
5) Perform three iterations of SHEAR on the array.
6) Sort all rows rightward.

Following the applications of the above macros, the R x
S array will be sorted in row-major order. It is clear that the
above algorithm uses eight column phases and nine row
phases, for a total of 17 phases. However, since Step 3c)
and Step 4a) both involve row transformations, the two
steps can be combined into one row transformations, thus
reducing the total number of phases to 16. Further, when R
I S”’, then the number of phases can be reduced to 14.

Now, let us examine the time complexity of this
algorithm when implemented on a 2-D RASOB. The
BALANCE macro consists of two sorting steps along the
columns of the 2-D RASOB. That is, we need to perform
two sorting steps on a 1-D RASOB using the procedure
SORT shown the previous Section. Thus, the two sorting
steps of the BALANCE macro can be performed on a 2-D
RASOB in O(k) time. The second step needed in the
BALANCE macro is the rotation of each row i by (i mod v)
positions. This can be easily accomplished in a single row
communication phase on the 2-D RASOB using the loading/
unloading train model. Hence, the BALANCE macro can
be executed on a 2-D RASOB in O(1) time. The UNBLOCK
macro consists of one sorting step along the columns which
takes O(k) time as shown above, and one rotation step of all
the rows rightward which takes a single row
communication phase. Therefore, the UNBLOCK macro
can be executed on a 2-D RASOB in O(k) time. Finally the
SHEAR macro which consists of 2 sorting steps along the
rows and along the columns also can also be executed on a
2-D RASOB in O(k) time using the procedure SORT of the
1-D RASOB. Thus, the whole Rotatesort Procedure can be
executed on the 2-D RASOB in O(k) time where k is the size
of data elements to be sorted in bits. As mentioned
previously, under most practical situations k rarely exceeds
20 which render the complexity of our sorting algorithm on

References
[l] Y. Ben-Asher, D. Pelg, R. Ramaswami, and A. Shuster, “The

power of reconfiguration,” Journal of Parallel and Distrib-
uted Computing, pp. 139-153, 1991.

[2] Z. ‘Guo, “Optically interconnected processor arrays with
switching capability,” Journal of Parallel and Distributed
Computing, pp. 314-329, 1994.

[3] M. Hamdi and Y. Pan, “Efficient parallel algorithms on opti-
cally interconnected arrays of processors.” IEE Proceed-
ings-Computers and Digital techniques, Vol. 142, pp. 87-
92, March 1995.

[4] J. Jang and V. K. Prasanna, “An optimal sorting algorithm on
a reconfigurable mesh,” in Proc. Int. Parallel Processing
Symp., pp. 130-137, 1992.

[5] T. W. Kao, S. J. Homg, Y. L. Wang, and H. R. Tasi, “Design-
ing efficient parallel algorithms on CRAP,” IEEE Trans.
Parallel and Distributed Systems, pp. 554-560, 1995.

[6] P. Lalwaney, A. Ganz, and I. Koren, “Optical interconnects
for multiprocessors: Cost performance analysis,” In Proc.
on Frontiers of Mass. Para. Comp., pp 278-285, Oct. 1992.

[7] J. M. Maberg and E. Gafni, “Sorting in constant number of
row and column phases on a mesh,” Algorithmica, pp. 561-
572,1988.

[8] R. Melhem, D. Chiarulli, and S. Levitan, “Space multiplexing
of waveguides in optical multiprocessor systems,” The
Computer Journal, 32 (4): 362-369, 1989.

[9] M. Migam and S. Sahni, “Sorting n numbers on n x n recon-
figurable meshes with buses,” Journal of Parallel and Dis-
tributed Computing, pp. 37-48, 1994.

[101 S. Pave1 and S. G. Akl, “On the power of arrays with recon-
figurable optical buses,” Technical Report 95-374, Depart-
ment of CIS, Queen’s University, 1995.

[l 11 C. Qiao and R. Melhem, “Time-division optical communi-
cations in multiprocessor arrays,” IEEE Transactions on
Computers, 42 (5) : 577-590, May 1993.

[12] B. F. Wang, G. H. Chen, and F. C. Lin, “Constant time sort-
ing on a processor array with a reconfigurable bus system,”
Information Processing Letters, pp. 187- 192, 1990.

188

