
Fast Sorting Algorithms on Reconfigurable Array of 
With Optical Buses 

Mounir Hamdi, J. Tong, and C .  W. Kin 
Department of Computer Science 

Hong Kong University of Science and Technology 
Clear Water Bay, Kowloon, Hong Kong 

Abstract 

The Reconfigurable Array with Spanning Optical Buses 
(RASOB) has recently received a lot of attention from the 
research community. By taking advantage of the unique 
properties of optical transmission, the RASOB provides 
flexible reconfiguration and strong connectivities with low 
hardware and control complexities. In this paper, we use 
this architecture for the design of efficient sorting algo- 
rithms on the I -D RASOB and the 2 - 0  RASOB. Our parallel 
sorting algorithm on the I-D RASOB, which sorts N data 
items using Nprocessors in O(k) time where k is the size of 
the data items to be in bits, is based on a novel divide-and- 
conquer scheme. On the other hand, ourparallel sorting al- 
gorithm on the 2 -0  RASOB is based on the sorting algo- 
rithm on the I -D RASOB in conjunction with the well known 
Rotatesort algorithm. This algorithm sorts N data items on 
a 2 -0  RASOB of size N in O(k) time. These sorting algo- 
rithms outperform state-of-the-art sorting algorithms on 
reconfigurable arrays of processors with electronic buses. 

1. Introduction 
Reconfigurable architectures are attractive because they 

provide alternatives to completely connected systems at 
lower implementation costs. Since optical interconnects can 
offer many advantages over its electronic counterpart, they 
will soon be a viable alternative for multiprocessor inter- 
connections [3]. This paper describes the Reconfigurable 
Array with Spanning Optical Buses (RASOB) architecture 
which provides flexible reconfiguration as well as rich con- 
nectivities at low hardware and control complexities [2, 111. 
Then we use this architecture for the efficient implementa- 
tion of sorting algorithms which outperform state-of-the-art 
sorting algorithms on arrays of processors with electronic 
buses. 

A unique feature of the RASOB architecture that distin- 
guishes it from other array of processors with either optical 
or electronic buses [3, 191 is that there is a direct connection 
between any two processors. More specifically, in a RA- 
SOB, a processor at row i and column j can send a message, 
without buffering at any intermediate processor, to a pro- 
cessor at row k and column I ,  even if i # k and j # 1. Such a 
direct connection between these two processors at different 
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rows and di€ferent columns cain be established by setting an 
electro-optical switch [23] that interconnects the row i and 
column 1. We will refer to the operation of setting switches 
as hardware reconfiguration in an RASOB. 

The RASOB architecture also takes advantage of two im- 
portant properties of the optica 1 transmissions, namely, uni- 
directional propagation and predictable unit propagation 
delay. Hence, the processors can he programmed to send 
and receive imessages under synchronized control, such that 
a connection between a source and a destination is estab- 
lished by letting the source send a message at a specific 
point in time and letting the destination receive the message 
at another specific point in time [3, 8, 231. We refer to this 
type of reconfiguration as software reconfiguration. 

Because some of the reconfiguration is done in software, 
the complexity of both hardware and control required for 
the reconfiguration in an RASOB can be kept low. However, 
despite its low control and hardware complexity, the pro- 
posed RASOB architecture provides flexible reconfigura- 
tion that leverages the high communication bandwidths 
available in optical interconnects. As a result, the RASOB is 
a very promising architecture for the efficient parallel im- 
plementation of many communication intensive algorithms. 

The paper is organized as follows. section 2 describes the 
RASOB architecture. In section 3, we give the detailed de- 
sign and analysis of our sorting algorithms on a l-D RASOB 
and on a 2-D RASOB. Finally, we conclude in section 4. 

2. Architectural Model 
The RASQB architecture is similar to the array structure 

described in [2, 101 and in particular to the array structures 
described in [ l l ] .  A main difference is that in the proposed 
architecture, messages are sent and received according to 
specific timing requirements. This makes the proposed ar- 
chitecture suitable for SIMD applications. On the other 
hand, the structure in [ 1 I]  employs an addressing mecha- 
nism which supports MIMD applications at higher hard- 
ware and control complexities. Figure 1 illustrates the ar- 
chitecture oB a 2-D RASOB. ,4s shown in Figure la, there 
are n folded row buses and n folded column buses. Each 
processor has a transmitting interface to the upper segment 
of a row bus, and two receiving interfaces to the lower seg- 
ment of the row bus and the right segment of a column bus, 
respectively. We denote the row of a 2-D RASOB or the col- 
umn of a 2-D M S O B  as a 1-D RASOB. Further, the term 
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RASOB is used to denote a 2-D RASOB. 
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Figure 1. (a) The architecture of RASOB, and (b) A 
switch interconnecting a row and a column bus. 

A distinct architectural feature of the RASOB is that a 2 
x 2 electro-optical switch is placed at the intersection of a 
row and a column bus, as shown in Fiigure 1.b. When the 
switch is set to "straight", a message arriving along a row 
bus will continue propagating; otherwise, the message will 
be switched to the column bus. During a specific period, all 
the switches at a given row are set to straight. As a result, 
processors at a row communicate with each other at the 
same row. This type of communications is referred to as 
"Row communications" and the period during which row 
communications is accomplished is referred to as a Row 
phase. A processor may also communicate with a processor 
at a dzfferent row, which may or may not be at a different 
column. This type of communications is referred to as "Col- 
umn communications" and is accomplished by switching 
the message from a row bus to the desired column bus dur- 
ing a period called Column phase. In doing so, the switches 
are set to "cross" for the duration of the message and then 
changed back to the straight state. 

2.1 Software Reconfiguration 

In a row phase, each row bus operates independently 
from the others so it is sufficient to describe just one row 
bus (e.g., row bus r),  as shown in Figure 2. We will denote 
the processors at row r from left to right by p(r,  l), p(r ,  2), 
... andp(r, n), respectively. 

There are two important optical transmission properties, 

Train loading 

@ 5 c 1  p(r.  n)  

Train unloading - 
Figure 2. Train loadinglunloading on a row bus. 

unidirectional propagation and predictable propagation 
delay of the optical signals, that make concurrent access of 
an optical bus possible. With an appropriate spatial separa- 
tion between the neighboring PES, message collision can be 
avoided even when the PES are transmitting messages con- 
currently [2, 3, 8, 113. Hence, we assume that each proces- 
sor on a row bus is separated in time by D = bw + 6 from 
its neighbors, where b is the maximal length of a packet in 
bits, w is the optical pulse width (or bit duration) in seconds, 
and 6 > 0 is used as guard bands to tolerate synchronization 
errors. This temporal separation can be achieved by separat- 
ing the two neighboring transmitter interjiaces on the upper 
segment as well as the receiver interfaces on the lower seg- 
ment of a row bus with a fiber length D x c, where c is the 
speed of light in the fiber, as shown in Figure 2. 

We may use the train loading/unloading model to de- 
scribe the operations in a row phase. Let us imagine that at 
the beginning of a row phase, a train of n cars is originated 
at the right-most end of the upper segment of the row bus. 
Each car can be regarded as an empty packet slot with a du- 
ration of D. During a row phase, the switches that connect 
the row bus with column buses are in the "straight" state so 
that the train will run through the lower segment of the row 
bus. A simple assignment of the curs is to let processorp(r, 
1 )  use car 1 for sending its packet, let p(r,  2) use car 2 for 
sending its packet and so on. 

With. this assignment of the curs, the time when p(r,  i )  
may transmit its packet, relative to the beginning of the row 
phase, is given by 

RowSend[(r,i)] = ( i - 1 ) D +  ( n - i ) D  = ( n - 1 ) D  

As a result, all processors will be transmitting simulta- 
neously. In addition, a receiving processor can determine 
the exact time when the car carrying the packet will arrive 
at its receiver interface. More specifically, if processor p(r ,  
i )  is expecting a packet sent by p(r,  j ) ,  it can calculate the 
time it should pick up the packet as below, 

RowRec[(r,i) t ( r , j ) ]  = ( n - l ) D +  ( i + j - l ) D  (2) 

= ( n + i + j - 2 ) D  

By placing all the processors under a synchronized control 
and letting each processor send and receive at specific 
points in time as in Equations (1) and (2), the row bus can 
be reconfigured into a variety of interconnection patterns. 

2.2 Hardware Reconfiguration 

If a processor needs to communicate with another pro- 
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cessor at a different row, it has to send a packet in a column 
phase. The train loading/unloading model is also useful in 
illustrating the principles involved in column communica- 
tions. We let car 1 of the train make a turn, from the lower 
segment of a row bus, onto column bus n, car 2 make a turn 
onto column bus (n - 1), and so on. 

Similar to Equation (2), we can determine the time that 
car k arrives at switch (n - k + 1) to be 

SwitchArvl[(r,n-k+1) t ( r , k ) ]  = ( 2 n - l ) D  

Since the right side of the equation does not contain k,  ev- 
ery car arrives at its turning point at the same time. There- 
fore, one may set the switches on a row bus to “cross“ si- 
multaneously and by doing this, the n packets in the train 
are switched onto their respective destination columns, one 
packet per each column. This arrangement implies that dur- 
ing a Column phase, two or more processors at the same 
row can not send packets destined to the same column. 

If p(i, j )  needs to communicate with p(r, k)  where r # i, 
p( i , j )  have to transmit a packet into cur (n - k + 1). We can 
determine the time for p(i, j )  to transmit its packet to be 

Colsend[  ( i , j )  + ( r , k ) ]  = ( n - k ) D +  ( n - j ) D  

+ 2 n - j - k ) D  

By separating the adjacent row buses by D, a column bus 
will look like a row bus that is turned 90’ anti-clockwise af- 
ter the packets are switched. With as much as D separation 
between every two row buses, there will be again a train of 
n cars, each carrying a packet, formed on the left segment 
of a column bus. Hence, we can determine the time for p(r, 
k )  to pick up the packet at the its receiver interface on the 
column bus, which is sent by p( i ,  j ) ,  to be 

C o l R e c [ ( r , k )  t ( i , j ) ]  = ( 2 n + i + r - 2 ) D  

2.3 Connectivity and Complexity 

Software reconfiguration can be performed with little 
control overhead because each of the above Equations (1) to 
( 5 )  involves simple arithmetic calculations. In addition, the 
hardware complexity of the proposed architecture is low be- 
cause each processor uses only one two-state 2 x 2 switch 
and has only one transmitter. Despite the low control and 
hardware complexities, the RASOB provides strong connec- 
tivities due to the following characteristics. First, a direct 
connection between any two processors can be established. 
Second, reconfiguration is flexible as one may interleave 
Row and Column phases in many ways to provide the com- 
munication bandwidth required by an application. Finally, 
since only a portion of optical power is tapped off at each 
receiver interface, multicasting can be supported simply by 
programming multiple receivers to receive at different 
points of time during the same phase. 

3 Algorithm Development 

Although the RASOB has a strong connectivity, it, like 
many practically scalable architectures, has a weaker con- 

nectivity than a completely-connected network. The capa- 
bilities as well as restrictions of the architecture makes it an 
interesting yet challenging task to design efficient algo- 
rithms for the RASOB. In designing algorithms for the RA- 
SOB, one may use the idea prciposed in [2, 111 to partition 
the set of connections required by an application into sub- 
sets such that the connections in each subset can be estab- 
lished in a Row/Column phase. However, such a partition 
may not result in optimal number of communication phases 
and therefore a customized design may be necessary. As an 
example of hlow one can take advantage of the capabilities 
while overcoming the restrictions of the RASOB architec- 
ture, we develop efficient sorting algorithms for the 1-D 
RASOB and the 2-D RASOB which outperform state-of-the- 
art sorting algorithms on the various models of arrays of 
processors with reconfigurable electronic buses. 

3.1 Sorting on a Linear RASOB 

Because of its fundamental importance, sorting is one of 
the most extensively studied computing problems. The sort- 
ing problem can be defined as the rearrangement of N data 
items so that they are in ascending or descending order. 
Given a sequence SQ = {so, SI, ... , S N . ~  } of N data items, a 
linear ordering ‘‘< “ is defined in SQ and N is an integer. Ini- 
tially, the data items of SQ are permuted in a random order. 
The purpose of sorting is to arrange the data items of SQ 
into a new sequeince SQ’ = {s’c,, s’1, ... , S’N-I} such that s’, 
< s’ ,+~ for i =: 0, 1, ... , N - 2. If two data items s, and sJ are 
equal, then s, is taken to be the larger of the two data items 
if i > j ;  otherwise sJ is the larger data item. 

Many researchers have developed various parallel algo- 
rithms to speed-up sorting on different parallel computation 
models. In particular, fast state-of-the-art sorting algorithms 
were presented recently for various models of processor ar- 
rays with reconfigurable electronic buses [3]. Wang et al. 
proposed a constant time algorithms using O(N3) proces- 
sors [l2]. Using the Columnsort technique proposed by 
Leighton [lo], Ben-Asher et ai’. proposed an O(4‘) sorting 

‘i PES, fort  2 2 [l];  but 
1 + 2 x  (2/3) 

Jang et al. proposed a constant lime sorting algorithm using 
O(N2) processors [4]. Recently, Nigam and Sahni proposed 
two simpler constant time sorting algorithms using O(N2) 
processors (91. Finally, Kao et al. proposed a constant time 
sorting algorithm using 0 ( N 5 I 3 )  processors under the as- 
sumption of a very wide data bus [5].  

Although very fast, all these ,algorithms require an exces- 
sive number of processors to achieve that speed. However, 
when the size of data items to be sorted, N, is equal to the 
number of PES, it was shown tlhat the reconfigurable array 
of processors cannot sort in better than O(N) time [9]. 

The sorting algorithms presented in this paper use the 
same number of processors as Ihe number data items to be 
sorted. Yet there are almost as fast as the state-of-the-art 
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sorting algorithms which employ a much larger number of 
processors. 

Our sorting algorithm on a 1-D RASOB uses a divide- 
and-conquer approach to sort the data items as follows. 
First, we divide all the data items into two groups SQs and 

S S 

SQL, where SQs = {so , ..., s1 } and S Q L  = 

such that each data element of SQs, si is smaller than each 
S 

data element of SQL, S .  . However, the data elements of 

SQs and SQL may not be sorted yet. Next, we divide the 
data elements of SQS into two sub-groups such that each 
data element of the first sub-group is smaller than each data 
element of the second sub-group. We do the same thing for 
the data elements of SQL. We continue this division process 
until the size of each subgroup is equal to 1, in which case 
all the data elements will be sorted in the 1-D RASOB. Fig- 
ure 3 further illustrates this division scheme. 

J 1  

* * 
0000 A n - -  * * * * * W V V V  

Figure 3. The general idea of the divide-and-conquer 
sorting algorithm on a 1-D RASOB. 

Given N data items, where each data item is represented 
by k binary bits, and are distributed one data item per pro- 
cessor in a 1-D RASOB. Initially, each processor holds a 
single data item and two variables namely START = 1 and 
END = N .  The variable START represents the index of the 
left-most processor within a group. Thus, at the beginning 
of the sorting algorithm, all processors belong to a single 
group, and the index of the left-most processor is 1 (i.e., 
START = 1). Similarly, the variable END represents the in- 
dex of the right-most processor within a group. Conse- 
quently, at the beginning of the sorting algorithm, the vari- 
able END is equal to N which the index of the right-most 
processor of the group. During the sorting algorithm, each 
processor must maintain and update the values of these two 
variables so that it knows the members of its own group. 
Members of the same group must have the same values of 
START and END. We denote STARTi and ENDi to be the 
values of the variables START and END of processor p(i). 

Our sorting algorithm performs k iterations, where each 
iteration corresponds to a bit position of the data elements 
to be sorted, of the following 8 steps: 

Procedure SORT 

During iteration I :  

1. Each processor p(i)  broadcasts the data item it holds to 
p(STARTi), p(STARTi + l), ..., p(ENDi), including itself, 
if the Ith most significant bit of its data item is equal to 0. 
After this step, the RASOB processors will contain a vari- 
able number of data items in their respective receiving 
buffers. 

2. Each processor p(i)  checks its receiving buffer if it con- 
tains an (i - STARTi + 1)th data item. If that is the case, 
then it marks it down and does a type I replacement 
which is described in step 5 of the algorithm. Moreover, 
it clears its receiving buffer. The value of (i - STARTi + 
1) represents the position of p(i)  in its subgroup, starting 
from left to right. Processor p(i)  gets the (i - STARTi + 
1)th data item in order to let the processors on its left get 
data items of smaller values since the Ith significant bit is 
0. Hence, the processors on its left side can form their 
own subgroup later. 

3. This analogous to Step 1 above. Each processor p(i)  
broadcasts the data item it is holding to p(STARTi), 
p(STARTi + l), ..., p(ENDi), including itself, if the Ith 
most significant bit of its data item is equal to 1. After 
this step, the RASOB processors will contain a variable 
number of data items. 

4. Each processor p(i)  checks its receiving buffer if it con- 
tains an (ENDi - i + 1)th data item. If that is the case, then 
it marks it down and does a type II replacement which is 
described in step 5 of the algorithm. Moreover, it clears 
its receiving buffer. The value of (ENDi - i + 1) repre- 

sents the position of p(i)  in its subgroup, starting from 
right to left. Processor p(i)  gets the (ENDi - i + 1)th data 
item in order to let the processors on its right get data 
items of larger values since the Ith significant bit is 1. 
Hence, the processors on its right side can form their own 
subgroup later. 

5 .  Each processor does a type I replacement or a type II  re- 
placement by replacing the data item it is holding with 
the marked data item. 

6. Each processor p(i)  sends a message to p(i  - 1) only if i - 
1 START. and sends a message to p(i  + 1) only if i + 1 I 
ENDi to find out what type of replacement they have per- 
formed. In other words, processor p(i)  finds out whether 
the processor on its immediate left and the processor on 
its immediate right belong to the same group or not since 
p(STARTi) has no processor on its immediate left belong- 
ing to the same group and p(ENDi) has no processor on 
its immediate right belonging to the same group 

7. For each processor p(i) ,  if it has performed a type I re- 
placement and finds that i+l 5 ENDi andp(i+l) has per- 
formed a type II  replacement, then p(i)  sends a message 
to p(STARTi), p(STARTi + I), ..., p(i)  so that they change 
their variable END to be equal to i. 

8. For each processor p(i) ,  if it has performed a type II re- 
placement and finds that i - 1 STARTi and p(i-1) has per- 
formed a type I replacement, thenp(i) sends a message to 

1 
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p(i), p ( i  + l), ..., p(ENDi) informing them to change their 

variable START to be equal to i. 
End {Procedure SORT) 

We can note here that Step 7 and Step 8 are used to divide 
a group of data items into two sub-groups such that the val- 
ue of each data element of the first subgroup is smaller than 
the value of each data element in the second sub-group. Fur- 
ther, within one whole iteration, say iteration x ,  of the above 
algorithm, each processor can perform just one type or re- 
placement (i.e., type I or type I I )  since its xth most signifi- 
cant bit can be either 0 or 1 but not both at the same time. 

Theorem 1: The SORTprocedure can be computed in O(k) 
time on a 1-D RASQB where k is the size of the data ele- 
ments to be sorted in bits. 

Proof: Step 1 and Step 3 of the SORTprocedure are simple 
broadcast operations on a 1-D RASOB where the corre- 
sponding processors load their respective data items into the 
appropriate car of the transmission train of slots. each of 
these cars (slots) will be read by all processors in a 1-D RA- 
SOB in a single row communication phase. Consequently, 
Step 1 and Step 3 of the procedure SORT take 0(1) time. 
Step 2, Step 4 and Step 5 of the procedure SORT obviously 
each takes O(1) time since they simply involve accessing 
the receiving buffers of the processors and the replacement 
of the data items they are holding. Step 6 is a simple routing 
pattern between neighboring processors which can be ac- 
complished in a single row communications phase. Finally, 
Step 7 and Step 8 of the procedure SORT involve a broad- 
casting operation which also takes a single row communi- 
cation phase. Hence, each iteration of the procedure SORT 
takes O( 1) time. Consequently, the whole sorting algorithm 
on a 1-D RASQB take O(k) time since the number of itera- 
tions of the procedure SORT is k where k is the size of the 

We have to note here that under most practical situations 
k rarely exceeds 20. As a result, the time complexity of this 
sorting algorithm on a 1-D RASOB is almost constant. 

One drawback of the above SORTprocedure is that it re- 
quires each processor of the 1 -D RASOB to have a receiving 
buffer of size N, where N is the size of the data items to be 
sorted. Fortunately, the above drawback can be solved by 
simply installing a counter at each processor and requiring 
the size of the receiving buffers be equal to just 1. During 
each iteration of the SORTprocedure, each processor is re- 
quired to replace the data item it is holding either by the (i - 
START, + 1)th data item it receives in its buffer in Step 2, or 
by the (END, - i + 1)th data item it receives in its buffer in 
Step 4. Hence, we can use these counters to keep track of 
the data item that the appropriate processor is interested in. 
First, we have to set the counter of each processor to 0 be- 
fore the execution of Step 2 and before the execution of Step 
4 of the procedure SORT. Then, we increment the counter 
by 1 for each received data item in the buffer of the proces- 
sor. Since the receiving buffers of each processor can hold 
only a single data item, every new incoming data item will 

data items to be sorted in binary bits. 

replace the old one, until the counter is equal to i -START, + 
1 if Step 2 is being executed or the counter is equal to END, 
- i + 1 is Step 4 is being executed. Afterwards, each proces- 
sor p(i) stops accepting any more messages for the whole 
duration of either Step 2 or Step 4. Consequently, right after 
Step 2 or Step 4 of the procedure SORT, the data item inside 
the receiving buffer of each processor is the one needed to 
perform the replacement in Step 5. 

3.2 Sorting on a 2-D RASOB 

The procedure SORT on the 1-D RASOB can be easily 
extended to a 2-11 RASOB whiile retaining the same time 
complexity, O(k) One way to extend the procedure SORT 
is to use Leighton's Columnsort algorithm [9] or to use 
Maberg and Gafni Rotatesort algorithm [7]. In our imple- 
mentation of the procedure SORT on the 2-D RASOB, we 
use the Rotatesort algorithm. 

The Rotatesort algorithm is a row-column sorting 
technique proposed originally for the 2-Dl mesh [7]. As this 
paper is not particularly concerned with 2-D mesh, the main 
interest is in Rotatesort as it applies to a 2-D arrays of data 
items to be sorted. More precisely, the fact that Rotatesort 
partitions a set of N data items into subsets (rows and 
columns), which can be sorted independently on a 2-D 
RASOB while using just the 1-D RASOB SORTprocedure. 

Given N =: RS data elements arranged as a 2-D R x S 
array, the Rotatesort technique 171 sorts the N data elements 
by alternately transforming the rows and columns of the 
array. The nuimber of row and column phases is constant (14 
or 16 phases). Each transformation phase consists of either 
performing a circular shift operation on the elements of 
each row or each column. 

During Rotatesort, the R x S array of data elements is 
partitioned as shown in Figure 4. A vertical strip 
(respectively, horizontal strip) is an R x S'" (respectively, 
S"* x S) subairray of data elements. Also, a block is a S'" x 
S subarray of data elements. The algorithm as presented in 
[7] assumes that R = 2' and S = 2!', where s is an even integer 
and r sl2. However, other vallues of R and S can be used 
with little modification. The algorithm description can be 
facilitated by defining the following macros: 

Vertical Strips 

&1/2 

Horizontal Strips Blocks 

Figure 4. Partitions of the R x S array. 
Macro BALANCE: applies to a subarray of size U x v 
and consists of the followiing three steps: 
a. Sort all columns down,ward. 
b. Rotate each row i rightward by ( i  mod v )  positions. 
c. Sort all columns downward. 
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Macro UNBLOCK: distributes the data elements of 
each block among all columns. It consists of the 
following two steps: 

Rotate each row i rightward by (is”’ mod S )  
positions. 

a. 

b. Sort all columns downward. 
Macro SHEAR: equivalent to performing one iteration 
of the shear-sort algorithm. It consists of the following 
two steps: 
a. Sort all even-numbered rows rightward and all odd- 

numbered rows leftward. 
b. Sort all columns downward. 

a 2-D RASOB almost as efficient as constant time sorting. 

Theorem 2: Sorting N data items can be computed in O(k) 
time on a 2-D RASOB of size N where k is the size of the 
data items to be sorted in bits. 

4 Conclusion 

The M S O B  architecture has recently received a lot of 
attention from the research community. In this paper, we 
used this novel architecture for the implementation of two 
efficient sorting algorithms. The first sorting algorithm has 
been implemented on a 1-D RASOB. It which is based on a 
divide-and-conquer approach, has a time complexity of 
O(k) where k is the size of the data elements to be sorted in 
bits. The second algorithm has been implemented on a 2-D 

The Rotatesort algorithm can be described in terms of 
these macros as follows: 

Procedure Rotatesort: RASOB. It uses the-sorting algorithms implemented for the 
1-D RASOB in conjunction with the well known Rotatesort 
algorithm to achieve an O(k) time complexity. Both of these 
algorithms are more efficient that state-of-the-art sorting 
algorithms on various models of array of processors with 
reconfigurable electronic buses. Hence, the RASOB seem to 
be a very promising architecture for fUtUre massively 
parallel computing. 

1) Perform BALANCE on each vertical slice. 
2) Perform UNBLOCK on the entire array. 
3) Perform BALANCE on each horizontal slice. 
4) Perform UNBLOCK on the entire array. 
5) Perform three iterations of SHEAR on the array. 
6) Sort all rows rightward. 

Following the applications of the above macros, the R x 
S array will be sorted in row-major order. It is clear that the 
above algorithm uses eight column phases and nine row 
phases, for a total of 17 phases. However, since Step 3c) 
and Step 4a) both involve row transformations, the two 
steps can be combined into one row transformations, thus 
reducing the total number of phases to 16. Further, when R 
I S”’, then the number of phases can be reduced to 14. 

Now, let us examine the time complexity of this 
algorithm when implemented on a 2-D RASOB. The 
BALANCE macro consists of two sorting steps along the 
columns of the 2-D RASOB. That is, we need to perform 
two sorting steps on a 1-D RASOB using the procedure 
SORT shown the previous Section. Thus, the two sorting 
steps of the BALANCE macro can be performed on a 2-D 
RASOB in O(k) time. The second step needed in the 
BALANCE macro is the rotation of each row i by (i mod v) 
positions. This can be easily accomplished in a single row 
communication phase on the 2-D RASOB using the loading/ 
unloading train model. Hence, the BALANCE macro can 
be executed on a 2-D RASOB in O( 1) time. The UNBLOCK 
macro consists of one sorting step along the columns which 
takes O(k) time as shown above, and one rotation step of all 
the rows rightward which takes a single row 
communication phase. Therefore, the UNBLOCK macro 
can be executed on a 2-D RASOB in O(k)  time. Finally the 
SHEAR macro which consists of 2 sorting steps along the 
rows and along the columns also can also be executed on a 
2-D RASOB in O(k) time using the procedure SORT of the 
1-D RASOB. Thus, the whole Rotatesort Procedure can be 
executed on the 2-D RASOB in O(k)  time where k is the size 
of data elements to be sorted in bits. As mentioned 
previously, under most practical situations k rarely exceeds 
20 which render the complexity of our sorting algorithm on 
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